

Integrated and collaborative routing problems

M. Grazia Speranza University of Brescia

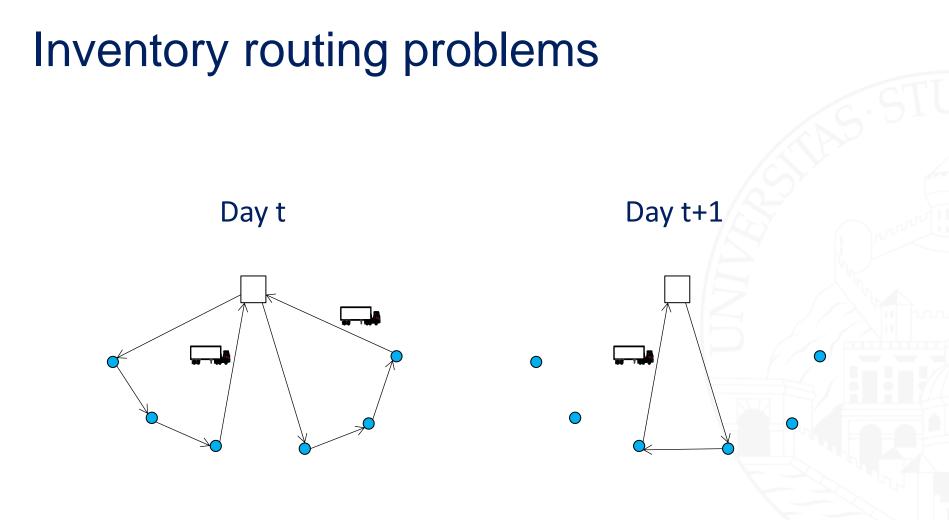
Malta, May 30th, 2019

The framework

BIG DATA

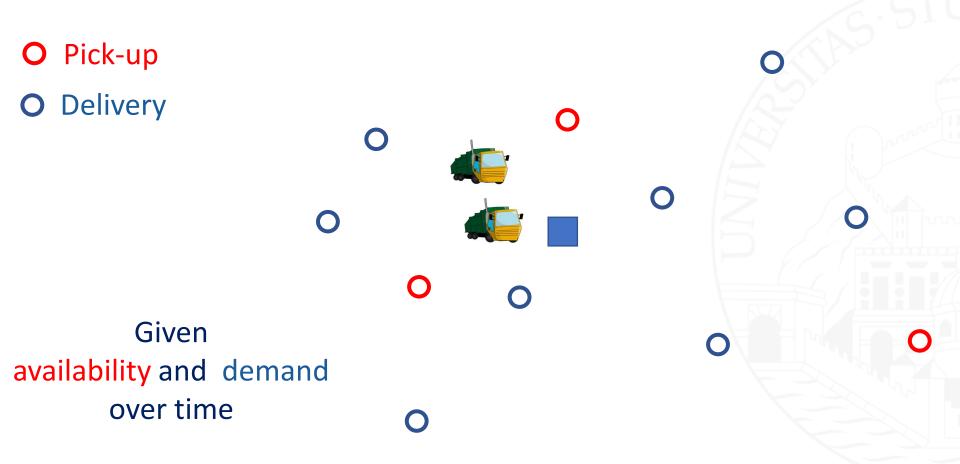
Directions in routing problems

Collaborative

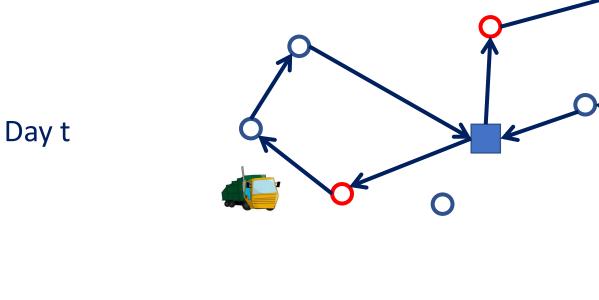


Data-driven

Integrated direction Vehicle routing Location Network design **Production** scheduling Inventory management



Routing problems over time


Pick-up and delivery inventory routing problem

Archetti, Christiansen, Speranza, EJOR, 2018

Pick-up and delivery inventory routing problem

 \mathbf{O}

Integrated and collaborative routing

 \mathbf{O}

Pick-up and delivery inventory routing problem 0 \square Day t+1

Pick-up and delivery inventory routing problem

- Pick-up customers daily quantity made available
- Delivery customers daily demand
- One vehicle with capacity Q
- Maximum and minimum inventory level at customers
- The depot is a warehouse where goods can be stored

Min routing cost + inventory holding cost

Pick-up and delivery inventory routing problem Variables:

- Quantity (horizon x customers) continuous
- Inventory level (horizon x customers) continuous
- Visit schedule (horizon x customers) binary
- Edge traversal (horizon x customer²) binary
- Load (horizon x customer²) continuous

Objective function:

Min routing + inventory holding costs

Constraints:

Inventory constraints

Vehicle capacity constraints

Routing constraints

Load constraints

Pick-up and delivery inventory routing problem

640 instances with varying:

- vehicle capacity: $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}$
- horizon: 3 or 6
- inventory cost: high or low

Improved branch-and-cut algorithm

Archetti, Boccia, Sforza, Speranza, Sterle,

• number of customers: up to 50

473 instances solved to optimality
1.22 average optimality gap
538 instances solved to optimality
0.89 average optimality gap

133 improved solutions

submitted

Pick-up and delivery inventory routing problem

- Integrated policy
- Sequential policy: each delivery customer applies (s,S)

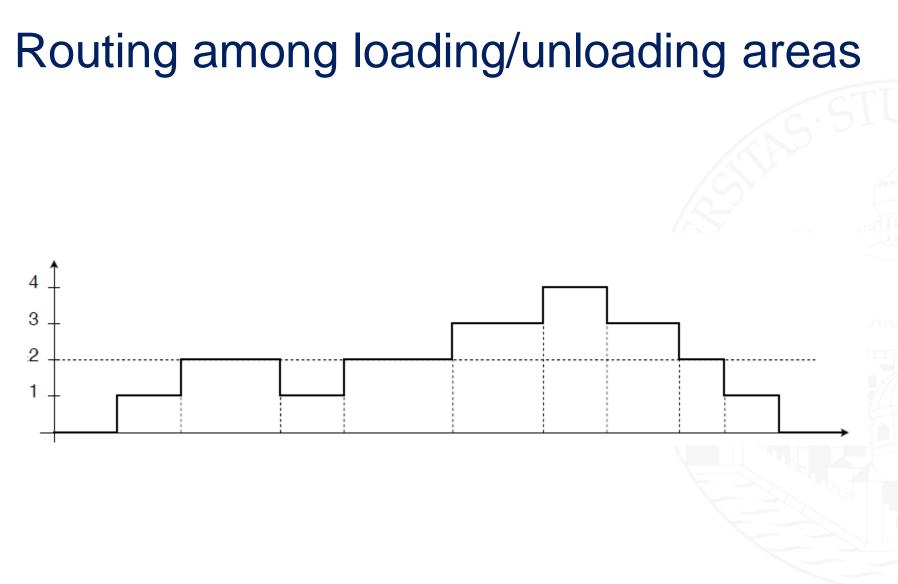
vehicle routing problems

	% total cost (average)	% total cost (max)			
T=3	40.47	63.19			
T=6	27.66	40.28			
Low inventory cost	36.36	52.97			
High inventory cost	34.67	63.19			
All	35.54	63.19			

Directions in routing problems

Collaborative

Data-driven



Mor, Speranza, Viegas, in preparation, 2019

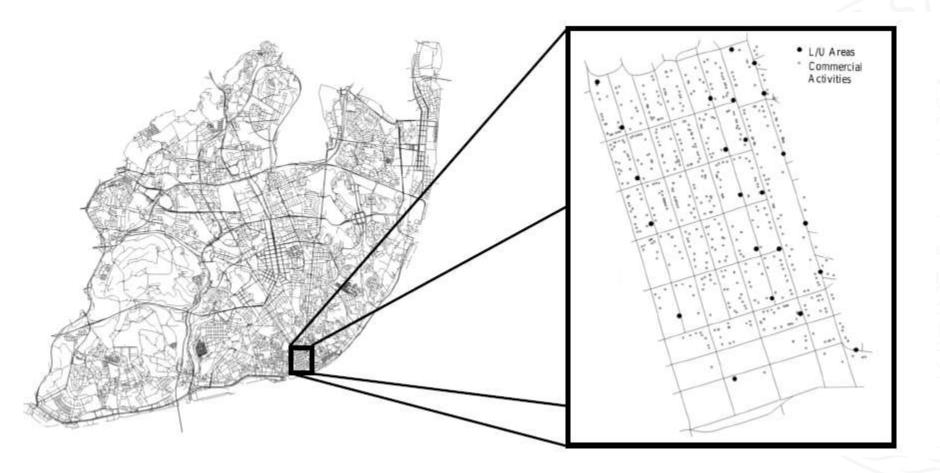
Each vehicle makes a reservation of the L/U areas

Windows of availability for the following vehicles

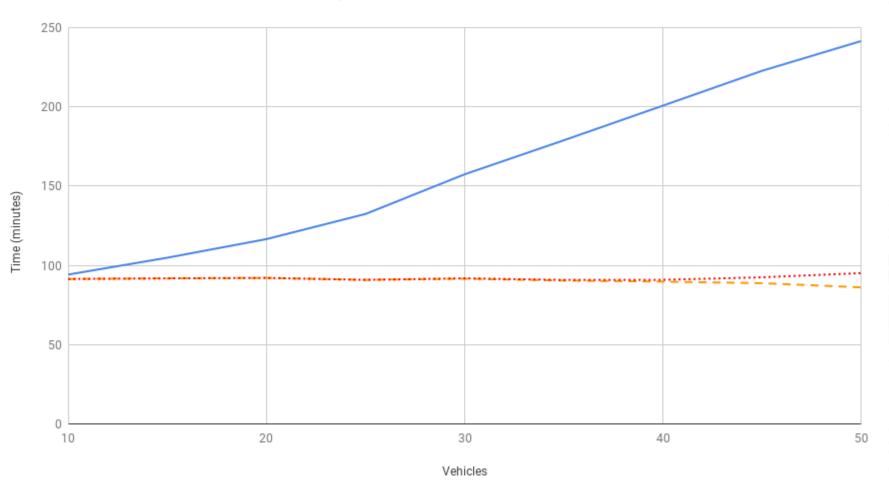
Variant of TSP with multiple time windows

TSP with multiple time windows

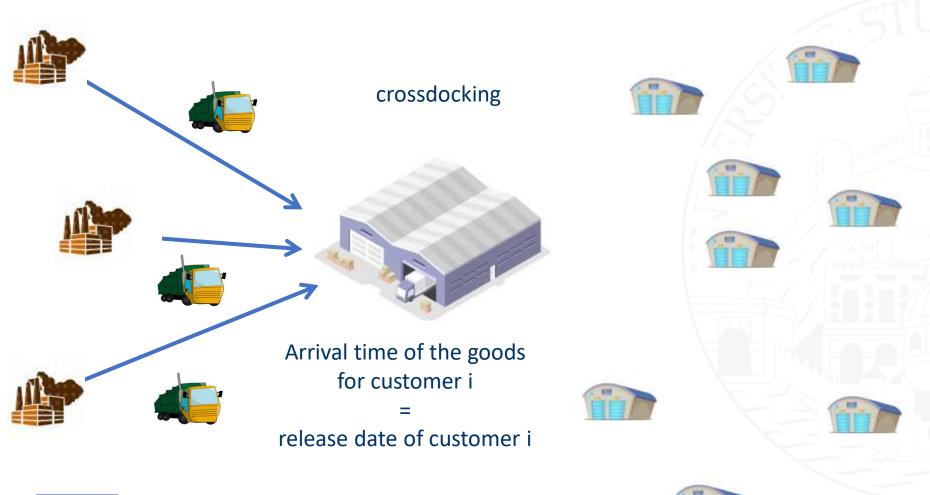
 $\min T_{|U|+1} - T_0$ $\sum x_{0u} = 1$ $u \in U$ $\sum x_{u(|U|+1)} = 1$ $\sum x_{iu} = \sum x_{ui} = 1 \quad u \in U,$ $i \in \{0\} \cup U$ $i \in U \cup \{|U|+1\}$ $(T_i + s_i + t_{ij} - T_j) \le M(1 - x_{ij}) \qquad i \in \{0\} \cup U, j \in U \cup \{|U| + 1\},\$ $T_u \ge W^a_{u,h} y_{u,h} \qquad u \in U, h \in H_u,$ $T_u + s_u \le W_{u,h}^b + M(1 - y_{u,h}) \qquad u \in U, h \in H_u,$ $\sum y_{u,h} = 1 \qquad u \in U,$ $h \in H_u$ $x_{ij} \in \{0, 1\} \qquad i \in \{0\} \cup U, j \in U \cup \{|U| + 1\},\$ $T_i \ge 0 \qquad i \in \{v_k, v_k + 1\} \cup U,$ $y_{u,h} \in \{0,1\} \qquad u \in U, h \in H_u.$


Fixed starting time of each route

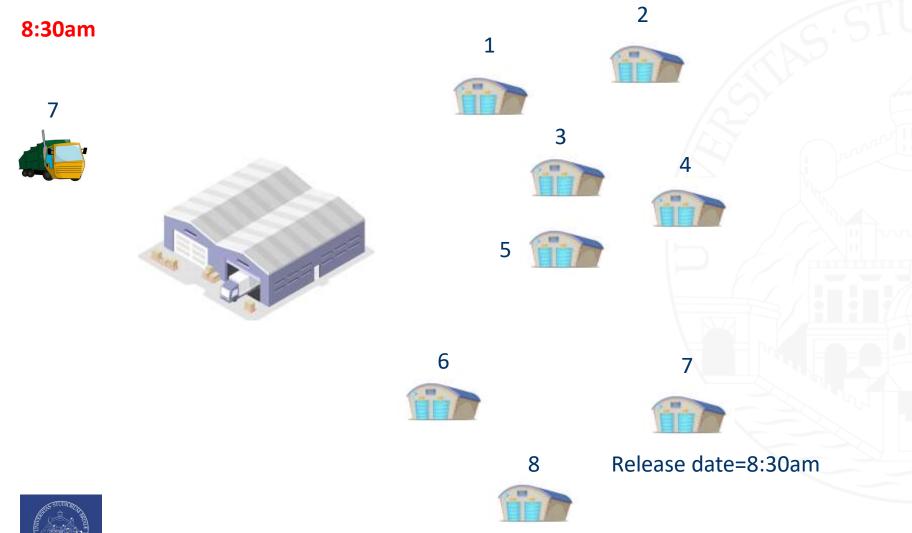
$$t_{0i} = 0 \qquad i \in U \cup \{|U| + i(|U|+1) = 0 \qquad i \in \{0\} \cup U$$
$$T_0 = 0$$
$$s_0 = h$$


Variable starting time of each route so

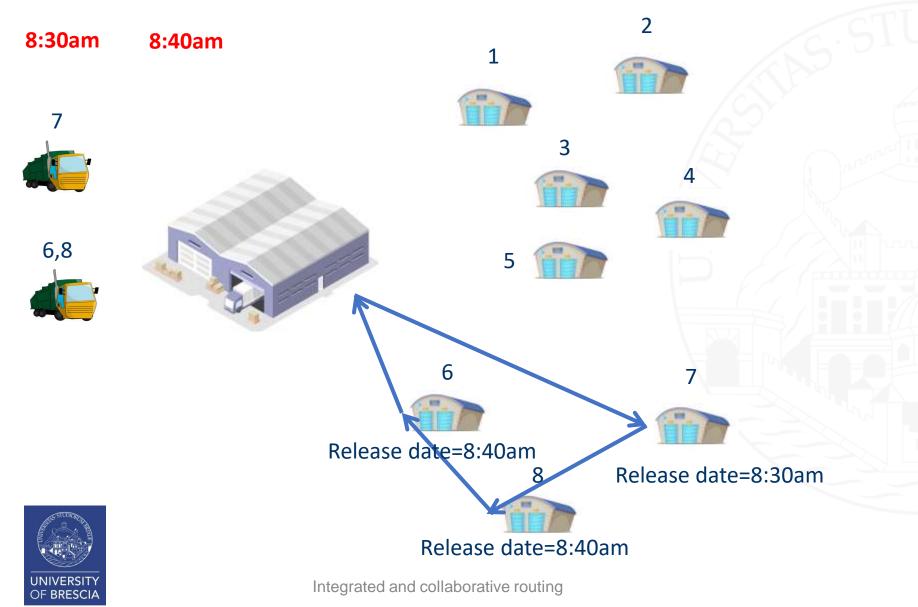
$$s_0 = 0$$

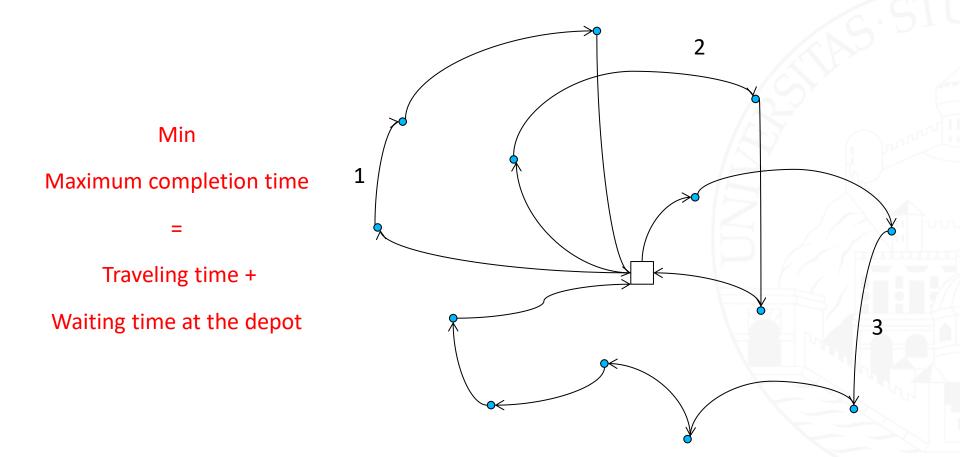

Directions in supply chain management

Collaborative



Data-driven





Archetti, Feillet, Mor, Speranza, EJOR, 2018

UNIVERSITY OF BRESCIA

<u>Property</u>: There exists an optimal solution without waiting time after the start of the first route

largest release date

<u>A lower bound</u>:

$$t(S^*) \ge \frac{r_n + d_{TSP}}{2}$$

An approximation algorithm:

Apply Christofides' algorithm Start the TSP tour obtained at time r_n

Performance guarantee: 2.5

n	# optimal solutions	
10	24	
15	24	
20	24	
25	13	
30	7	

Iterated local search Iterated local search with a MILP operator

Myopic: visit customers when they become available

ILS	ILS-MILP	Myopic
0.01	0.86	16.12

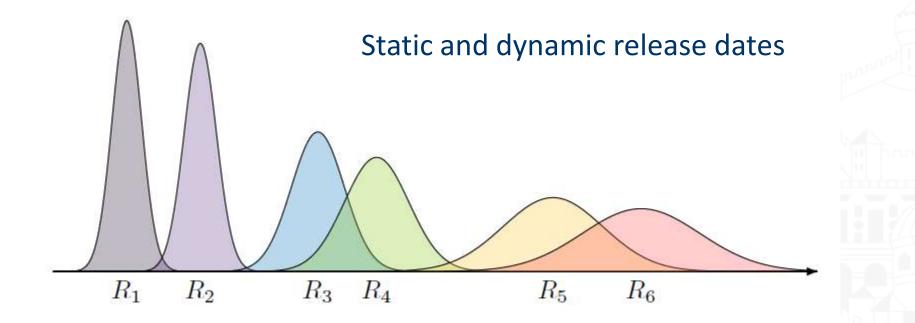
50 customers: gaps with respect to best known solution

Directions in routing problems

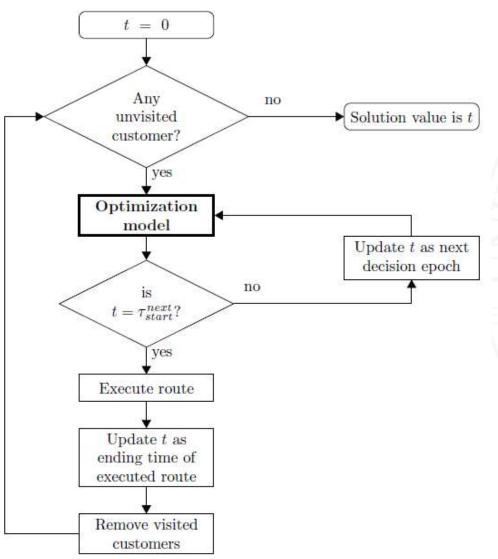
Data-driven

Arrival time at the warehouse often not known

Information may become available over time



The release date of a customer (arrival time of a truck) may be:


- known (reliable)
- static (random but the distribution does not change over time)
- dynamic (random and the distribution changes over time)

Archetti , Feillet, Mor, Speranza, submitted

	Deterministic		Stochastic			
Size	t_{LS}	n_{LS}	\bar{t}_{LS}	t_{LS}	n_{LS}	\bar{t}_{LS}
50	0.11	8	0.014	49.14	16	<mark>3</mark> .07
60	<mark>0.1</mark> 4	8	0.017	46.34	14	3.31
70	0.28	22	0.013	335.93	36	<mark>9.3</mark> 3
80	0.41	58	0.007	406.88	15	27.13
90	0.25	42	0.006	557.44	15	37.16
100	0.34	31	0.011	310.07	16	19.38

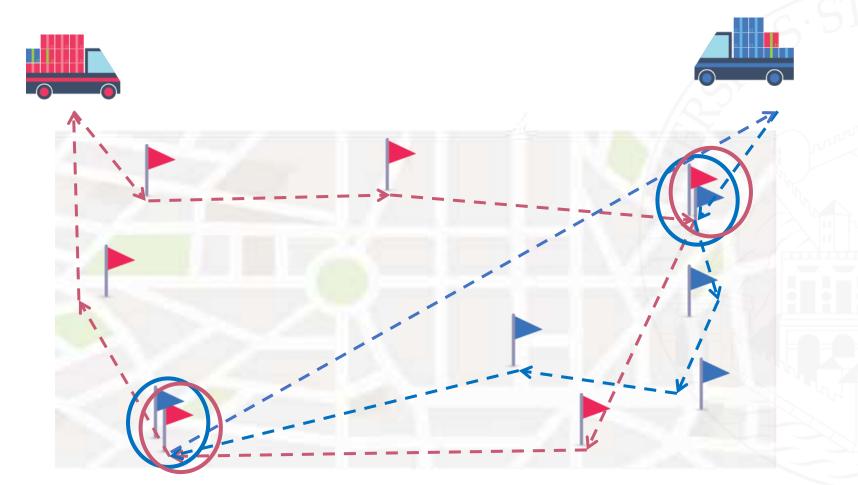
Time to perform 1 iteration of the Iterated Local Search

Directions in routing problems

Integrated

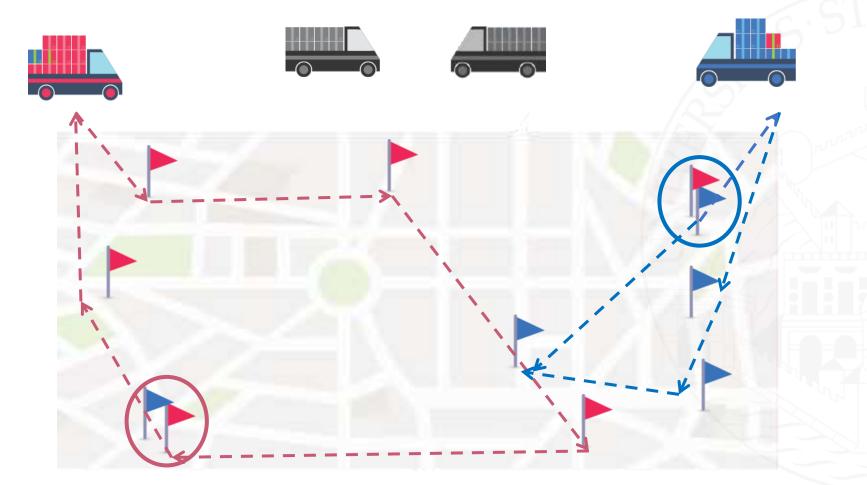
Data-driven

The shared customer collaboration VRP


- Each company has its depot and fleet
- There is a subset of **shared** customers
- Companies are willing to share the service of some customers with other companies in order to decrease their cost

Horizontal Between competitors Order sharing

Fernàndez, Roca-Riu, Speranza, EJOR, 2018



The shared customer collaboration VRP

The shared customer collaboration VRP

Analysis

$$z^{*}(\text{SCC-VRP}) \geq \max_{r \in C} z^{*}(\text{VRP}_{r})$$
$$z^{*}(\text{SCC-VRP}) \geq \frac{z^{*}(m - \text{VRP})}{m}$$
$$O_{1,...m} \quad \text{All depots are co-located}$$
$$\text{All carriers have 1 co-located customer}$$

If it is guaranteed that in the collaboration the profit of each company does not decrease with respect to any subcoalition, the solution belongs to the core of the game

Formulations

Vehicle formulation

$$x_{ij}^k$$
 arc i,j for vehicle k

 Z_{irs}^k customer i from carrier r to s, with vehicle k Load formulation

 x_{ij}^r arc i,j by carrier r

 z_{irs} customer i from carrier r to s

 l_{ij}^{rh} load on arc i,j by carrier r for customer h

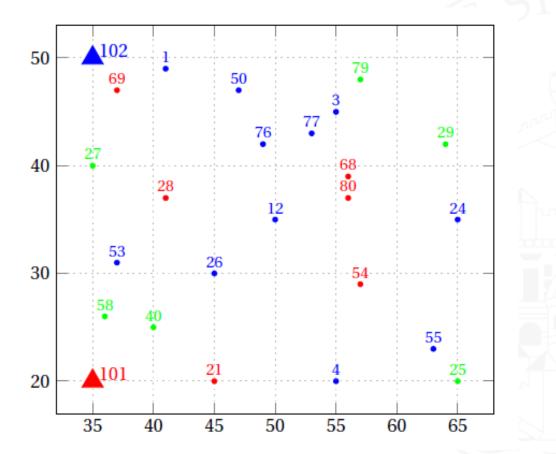
Solution approach

Vehicle formulation

Load formulation

Branch & Cut

+ Cover inequalities
+ Capacity-cut inequalities
+ Symmetry breaking constraints


Branch & Cut

- + Connectivity constraints
- + Capacity-cut inequalities
- + Symmetry breaking constraints

Test instances

S1 – adapted from
Cordeau, Gendreau, Laporte, 1997
12 instances for the MDVRP
18-30 customers

S2 – randomly generated
100 random/clustered instances
10-30 customers

Comparison between VF and LF (S1)

	VF					LF				
	Obj	r_A	r_B	% Gap	T(s)	Obj	r_A	r_B	% Gap	T(s)
1	337.45	2	2	53.44	TL	273.88	2	2	5.46	TL
2	518.13	2	2	66.05	TL	324.19	2	2	7.28	TL
3	316.78	2	2	55.11	TL	233.28	2	1	0.98	TL
4	563.58	2	2	68.00	TL	322.3	2	2	3.7	TL
5	468.54	2	2	60.60	TL	328.02	2	2	7.01	TL
6	259.87	1	2	32.68	TL	230.08	1	2	0	134.11
7	180.56	1	1	35.81	TL	156.93	1	1	0	120.1
8	536.03	2	2	65.82	TL	237.83	1	1	0	2472.56
9	515.48	2	2	54.12	TL	392.06	1	1	0	59.9
10	685.95	2	1	65.05	TL	455.71	1	1	0	90.19
11	494.6	1	2	20.53	TL	486.9	1	2	0	726.98
12	882.65	1	2	56.54	TL	750.6	1	2	13.00	TL

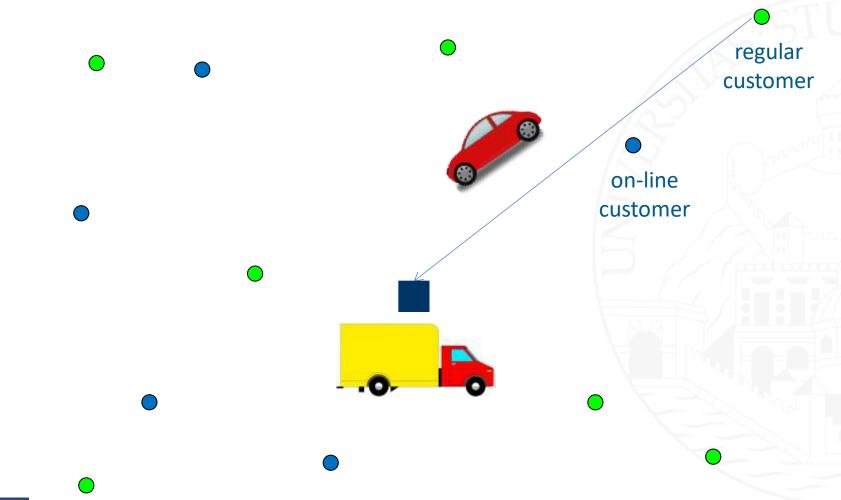
2 hours

Savings

	0	$S2_R$ R	andom	$S2_C$ Clustered				
N	#Opt	-%	-% A	-% B	#Opt	-%	$-\%_A$	$-\%_B$
10	10	13.4	7.9	13.7	10	2.5	2.5	2.5
15	10	12.0	12.6	6.4	9	7.3	1.2	11.1
20	5	18.3	19.2	11	6	17.8	8.3	18.6
25	4	9.8	8.4	10.9	3	11.1	6.1	12.6
30	1	15	20.5	8.1	0	11.4	14	7.5

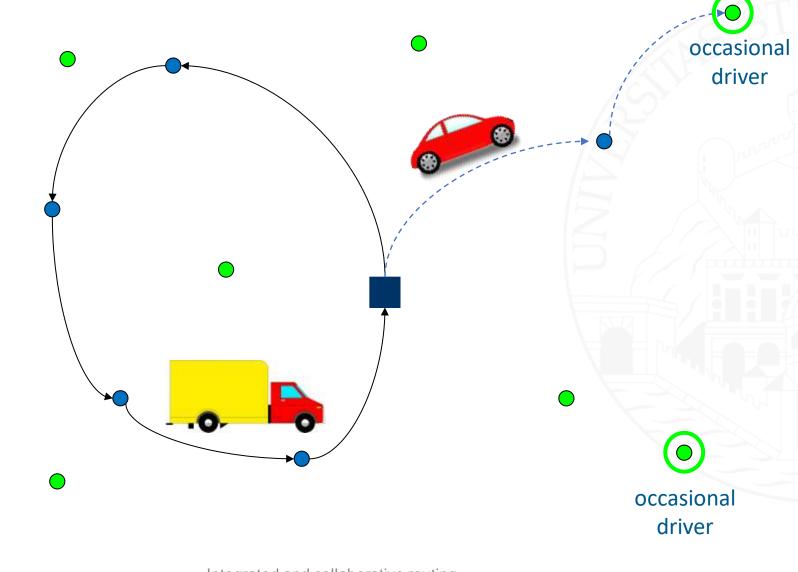
Individual (without collaboration) solutions always optimal

Directions in routing problems



Integrated

Data-driven


Crowd driving: Occasional drivers

Archetti, Savelsbergh, Speranza, EJOR, 2016

Occasional drivers

UNIVERSITY OF BRESCIA

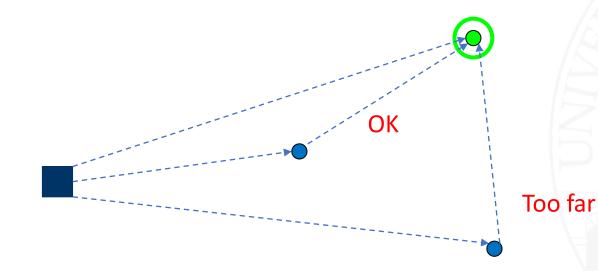
Occasional drivers

Costs:

- Routing cost for regular drivers
- Compensation to occasional drivers

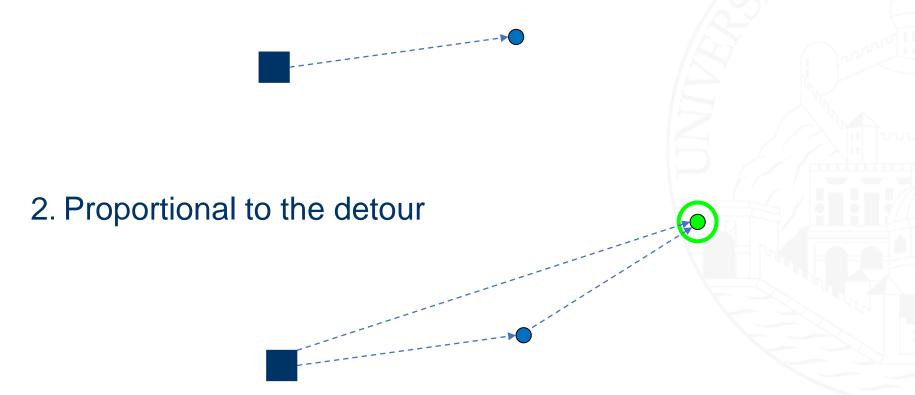
Objective:

Minimize the sum of the cost of regular drivers (routing cost) and occasional drivers (compensation)



Occasional drivers

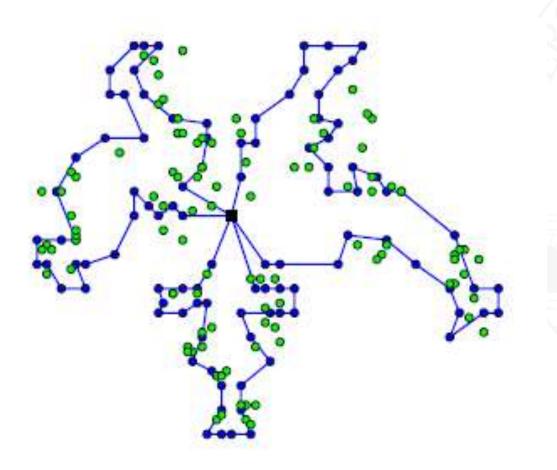
- Behaviour of occasional drivers
- Compensation schemes
- Objective: Minimize the sum of the cost incurred by regular drivers (routing cost) and occasional drivers (compensation)


Behaviour of occasional drivers

Compensation schemes

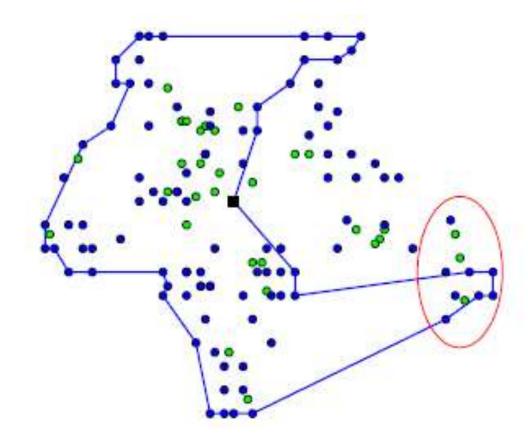
1. Proportional to the distance of the on-line customer

$$\begin{split} \min \sum_{(i,j) \in A} c_{ij} x_{ij} + \sum_{i \in C} \sum_{k \in V} p_{ik} w_{ik} & \text{depends on compensation scheme} \\ \sum_{j \mid (i,j) \in A} x_{ij} = \sum_{j \mid (j,i) \in A} x_{ji} = z_i & i \in C \\ \sum_{j \mid (j,i) \in A} x_{0j} - \sum_{j \mid (j,0) \in A} x_{j0} = 0 & \\ \sum_{j \mid (i,j) \in A} y_{ji} - \sum_{j \mid (i,j) \in A} y_{ij} = \begin{cases} d_i z_i & i \in C & \text{Exact} \\ \sum_{i \in C} - d_i z_i & i = 0 & \\ \sum_{i \in C} - d_i z_i & i = 0 & \text{Matheuriss} \end{cases} \\ y_{i0} = 0 & i \in C & \\ w_{ik} \leq \beta_{ik} & i \in C, k \in K \\ \sum_{i \in C} w_{ik} \leq 1 & k \in K \\ \sum_{k \in K} w_{ik} + z_i = 1 & i \in C & \\ \end{split}$$

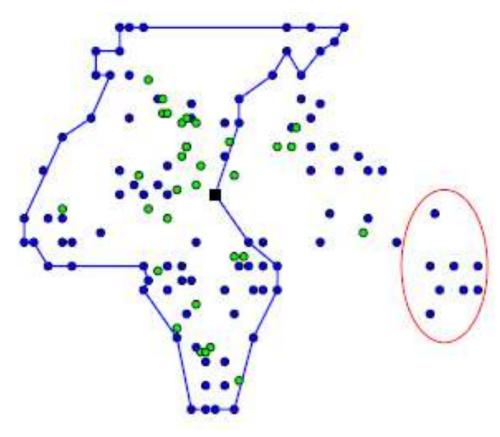

OF BRESC

Integrated and collaborative routing

Exact •


Matheuristic

Without occasional drivers


Compensation scheme proportional to detour

Compensation scheme proportional to detour

(lower compensation)

Savings

UNIVERSITY

OF BRESCIA

		% cost reduction	% routes reduction	%OD	% OD cost
		w.r.t. VRP	w.r.t. VRP	used	w.r.t. total cost
	C101	43.85	71.67	85.50	35.36
	C201	20.49	50.00	66.42	17.04
	R101	40.79	64.17	74.92	21.27
	R201	33.70	50.00	71.32	20.58
	RC101	33.47	52.96	64.20	14.70
Compensation	RC201	30.05	50.00	61.56	14.28
	K =50	26.85	48.07	80.73	12.31
scheme	K =100	40.60	64.86	63.77	28.77
	ς=1.1	31.66	54.58	67.58	14.51
proportional to	ς=1.2	33.16	56.10	69.40	17.11
detour	ς=1.3	34.27	56.87	71.60	23.09
ueloui	ς=1.4	34.74	57.56	73.10	23.82
	ς=1.5	34.80	57.21	72.40	24.16
	ρ=1.2	34.86	56.70	72.67	20.48
	ρ=1.4	33.69	57.12	72.72	20.53
	ρ=1.6	32.63	55.58	63.70	20.60
ALL STORE	Average	33.72	56.47	70.75	20.54

Conclusions

Our models and methods

- evolve with the technology
- contribute to the technology

